

Midline Webinar

JUNE 6, 2018

Welcome & Housekeeping

• Thank you for attending!

- HMS data abstractors
- Administrators
- o QI staff
- Vascular access
- Interventional Radiology
- Hospitalists
- Individuals not affiliated with HMS
- Q & A session following presentation
 - All phones muted
 - Please raise your hand using the webinar software or type your question

Michigan Hospital Medicine Safety (HMS) Consortium

SCOTT FLANDERS, MD HMS PROJECT DIRECTOR

HMS: Collaborative Quality Initiative

- HMS: 1 of 17 CQIs in Michigan
- Funding: Blue Cross Blue Shield of Michigan
 - Coordinating Center
 - .85 FTE data abstraction per hospital
 - Pay for performance
- Michigan hospitals voluntarily enroll

HMS Hospitals

- 43-50 hospitals
- Diverse types / settings
 - Large AMCs-Small rural hospitals
- Hospital Participants
 - Physician Champion-hospitalist
 - Quality Lead
 - o Data Abstractor
- Improving Care

• Data / best practice sharing / facilitated implementation

HMS Goal

To improve the quality of care for hospitalized medical patients who are at risk for adverse events

- Current QI Initiatives:
 - × Hospital-Associated VTE
 - × Intravascular Devices (PICC-Midlines)
 - × Inpatient Antimicrobial Use

Midlines: Middle Ground vascular access devices

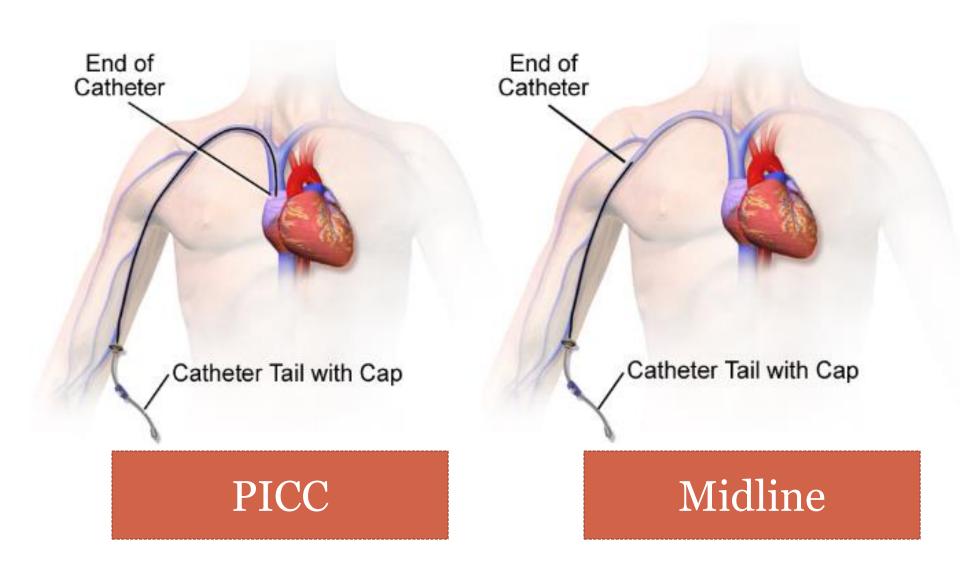
VINEET CHOPRA MD, MSC

Overview

- Introduction and Historical Aspects
- Evidence review what do we know about midlines?
- HMS midline data review
- Questions and Answers

- Introduction and Historical Aspects
- Evidence review what do we know about midlines?
- HMS midline data review
- Questions and Answers

HMS Midline Initiative


- Growing focus on alternatives to using PICCs
- One such alternative: Midline catheter
- HMS launched midline pilot in summer of 2017; data collection expanded collaborative wide winter 2018
- Midline project was driven by HMS sites
 - More PICCs being replaced with midlines
 - Is midline use associated with potential complications?
 - Are midlines "safer" than PICCs?
- To date~1,500 cases collected

What are Midline Catheters?

- Midlines a diverse group of devices that share in common the following characteristics:
 - Inserted in peripheral veins of the arm
 - Do not enter the central circulation
- Consequently midlines are best thought of as "middle ground" devices
 - Reside in larger, deeper veins of the arm \rightarrow more blood flow
 - More hemodilution = ability to dwell longer, less phlebitis
 - × PIV 40 ml/min in peripheral vein
 - × Midline 120ml/min in the deep upper arm veins

Anatomic localization of Midline Tip

Historical Aspects

• Midlines are not new!

- First devices introduced in the 1950's (before PICCs)
 - × Surgical patients >7 days of treatment
- Suffered from many problems
 - × Device failure ~ 40%
 - × High rates of contact allergy and phlebitis (materials)
- 1970's: PICCs introduced
 - Attention to midlines dropped as PICC use grew
- Growing concern and reports of inappropriate PICC use/overuse → renewed interest in midlines

Midlines are called many things...

- Extended dwell peripheral IV catheters
- Long peripheral IVs
- US-guided peripheral catheters
- Medial venous catheter
- Peripherally inserted midline device

All meet midline criteria – the difference is catheter length

HMS Definition of a Midline

- To qualify as a midline, a device must:
 - Be inserted into one of the veins of the arm
 - Have a catheter tip that dwells in the basilic, cephalic, or brachial vein
 - Terminate at or below the level of the axilla
- Midlines thus may range from 6-25cm in length.
- For the purposes of the HMS project, extendeddwell peripheral IVs are included in data collection.

- 4-5 French in diameter; Single and double lumen
- some trimmed/others pre-cut
- Power compatible for radiographic injections
- Number of materials
- Number of insertion techniques (MST/AST)
- Majority are placed under US guidance
- Majority are placed using maximal sterile barriers
- Common indications: difficult access, antibiotic Rx
- A number of devices and manufacturers

Overview

- Introduction and Historical Aspects
- Evidence review what do we know about midlines?
- HMS midline data review
- Questions and Answers

Evidence Review

• Structured literature search

- Contemporary data only (2016 onwards)
- All study designs
- Adults Only
- Focused on studies comparing midline to other vascular access devices:
 - PICCs, CVCs
 - Peripheral IVs
- Focused on types and rates of complications
 DVT, CLABSI, dislodgement, occlusion, etc.

The Risk of Adverse Events Related to Extended-Dwell Peripheral Intravenous Access

Sara Campagna, PhD, RN;¹ Silvia Gonella, RN, MSc;² Pietro Antonio Zerla, RN;³ Gianvito Corona, MD;⁴ Tiziana Correggia, RN, MSc;² Baudolino Mussa, MD;² Paola Berchialla, PhD;⁵ Valerio Dimonte, RN, MSc^{1,2} INFECTION CONTROL & HOSPITAL EPIDEMIOLOGY

CONCISE COMMUNICATION

Infect Control Hosp Epidemiol 2018; 1-3

- Retrospective database review; 2 hospitals in Italy
- All patients that received a midline between Sept 2007-Dec 2014 were included
- Midlines inserted using maximal sterile barriers and ultrasound guidance by a trained team
- 4-5Fr devices; 20-25 cm in length
- Main outcome:
 - Removal due to an adverse event (occlusion, exit site infection, bloodstream infection, symptomatic DVT)
 - Removal due to other reasons (completion of treatment, accidental dislodgement, patient death or 28d of infusion)

,			
All Patients $(n = 1,538)$	MC Removal Due to $AEs^a (n = 154)$	MC Removal for Other Reasons $(n = 1,384)$	P Value
155 (38.3)	17 (41.5)	138 (37.9)	.784
83 (77-88)	83.5 (80-87)	83 (77-89)	.915
			.074
829 (53.9)	94 (61)	735 (53.1)	
709 (46.1)	60 (39)	649 (46.9)	
413 (27.5)	39 (26)	374 (27.6)	.745
1,281 (83.3)	130 (85)	1,151 (83.2)	.675
242 (15.7)	21 (13.7)	221 (16)	
14 (1.0)	2 (1.3)	12 (0.9)	
			.147
1,370 (89.1)	143 (92.9)	1,227 (88.7)	
168 (10.9)	11 (7.1)	157 (11.3)	
26 (12-37)	14 (6–28)	27 (13-37.25)	<.001
25.5 (15-32)	22 (6-30)	26 (16-32)	.318
26 (11-38)	14 (6–28)	27 (13-40)	<.001
	(n = 1,538) $155 (38.3)$ $83 (77-88)$ $829 (53.9)$ $709 (46.1)$ $413 (27.5)$ $1,281 (83.3)$ $242 (15.7)$ $14 (1.0)$ $1,370 (89.1)$ $168 (10.9)$ $26 (12-37)$ $25.5 (15-32)$	$\begin{array}{c c} (n=1,538) & AEs^{a} \ (n=154) \\ \\ 155 \ (38.3) & 17 \ (41.5) \\ 83 \ (77-88) & 83.5 \ (80-87) \\ \\ 829 \ (53.9) & 94 \ (61) \\ 709 \ (46.1) & 60 \ (39) \\ \\ 413 \ (27.5) & 39 \ (26) \\ \\ 1,281 \ (83.3) & 130 \ (85) \\ 242 \ (15.7) & 21 \ (13.7) \\ 14 \ (1.0) & 2 \ (1.3) \\ \\ 1,370 \ (89.1) & 143 \ (92.9) \\ 168 \ (10.9) & 11 \ (7.1) \\ 26 \ (12-37) & 14 \ (6-28) \\ 25.5 \ (15-32) & 22 \ (6-30) \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

• Ten percent of midlines had adverse events (AEs) that required removal;90% did not

• Midlines that had AEs were removed earlier than those that did not

Adverse Events	No.	No. of Complications per 1,000 MC days	Time Elapsed Between MC Positioning and Onset of AE, median d (IQR; range)
Occlusion ^a	89	1.44	13 (6–28; 1–273)
Symptomatic thrombosis ^b	57	0.92	19 (8–32; 1–307)
Exit-site infection ^c	8	0.13	9 (7.8–39.8; 5–323)
All adverse events ^d	154	2.49	14 (6–28; 1–323)

TABLE 2. Individual Adverse Events (n = 154)

Low rates of Adverse Events No bloodstream infections Occlusion most common complication (6%) DVT Rates ~ similar to PICCs (4%)

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Major Article

Comparison of complications in midlines versus central venous catheters: Are midlines safer than central venous lines?

Ammara Mushtaq MD ^a, Bhagyashri Navalkele MD ^a, Maninder Kaur MD ^b, Amar Krishna MD ^b, Aleena Saleem MD ^b, Natasha Rana BSc ^c, Sonia Gera BSc ^c, Suganya Chandramohan MD ^{b,*}, Malini Surapaneni MD ^a, Teena Chopra MD, MPH ^a

^a Department of Medicine, Detroit Medical Center/Wayne State University, Detroit, MI

^b Division of Infectious Diseases, Detroit Medical Center/Wayne State University, Detroit, MI

^c Wayne State School of Medicine, Detroit, MI

Am J Infec Control 2018; Mar 7 (epub ahead of print)

Infection Control

Study Design

- Retrospective cohort study; single center
- March September 2016
- Midline outcomes compared to CVC/PICC outcomes
- Main outcomes:
 - Catheter-related Blood Stream Infection (CRBSI)
 - Mechanical complications
 - o Length of Hospital Stay
 - Readmission
 - o Death

Table 1

Baseline characteristics of the 2 cohorts

Variable	$ \begin{array}{c} \text{Midline} \\ (n = 411) \end{array} $	Central line (n = 282)	Odds ratio (95% CI)	<i>P</i> value
Mean age \pm SD, y	58.79±17.72	56.62 ± 17.76		.15
Female sex	227 (55.2)	129 (45.7)	0.68 (0.50-0.92)	.01*
Admission source	227 (33.2)	123 (43.7)	0.00 (0.30-0.32)	.01
Home	325 (79)	210 (74.4)		.0008*
Nursing home or rehabilitation facility	58 (14.1)	64 (22.7)		10000
Transfer from hospital	28 (6.8)	7 (2.4)		
Unknown	0(0)	1 (0.3)		
Mean BMI \pm SD, kg/m ²	28.8 ± 8.94	28.38 ± 9.22		.30
Median CCI score (IQR)	2(1-4)	2(1-4)		.43
Line present at admission	0(0)	67 (23.7)	257 (15.88-4184)	<.0001*
Indication	`			
Antibiotic delivery	80(19.4)	67 (23.7)		<.0001*
TPN	0(0)	5 (1.7)		
Poor vascular access	315 (76.6)	138 (48.9)		
Other	12 (2.9)	71 (25.1)		
Unknown	4 (0.9)	1 (0.3)		
Line placed by				
IR	7(1.7)	18 (6.3)		<.0001*
Vascular access team	400 (97.3)	140 (49.6)		
Unknown				

- Most midlines were placed during hospitalization
- Common indications for midline placement included difficult IV access (76.6%) and antibiotics (19.4%)
 - 97.3% midlines placed by vascular access team

Table 3

Univariate analysis of outcomes in patients with midlines versus central lines

	Midline	Central line	Odds ratio	
Variable	(n=411)	(n = 282)	(95% CI)	P value
Disposition				
Home	220 (53.5)	139 (49.2)		.0041*
Nursing home or rehabilitation facility	142 (34.5)	80 (28.3)		
Hospice or death	34 (8.2)	50 (17.7)		
Another hospital	14 (3.4)	12 (4.2)		
Unknown	1 (0.2)	1 (0.3)		
Median LOS, d (IQR)	7 (4.61-11.43)	5 (2.69-8.09)		<.0001*
Median LOS after line placed (IQR)	5 (4-9)	4(2-7)		<.0001*
ICU stay, d	220 (53.5)	111 (39.3)	0.56 (0.41-0.76)	.0002*
ICU transfer after line placement [†]	<u>19 (4.6)</u>	27 (9.5)	2.18 (1.18-4.01)	.0101*
CRBSI	<u>1 (0.2)</u>	<u>10 (3.5)</u>	15.07 (1.91-118.42)	.0008*
Systemic complication because of CRBSI	0/1 (0)	1/10(10)	4.38 (0.17-108)	.4069
SSTI	4(0.9)	<u> </u>	0.16 (0.0086-2.98)	.1501
Thrombosis	2 (0.49)	0(0)	0.28 (0.01-6.06)	.5166
Mechanical issues	11 (2.6)	<u>1 (0.3)</u>	0.12 (0.01-1)	.0333*
Line removed because of a line-related complication	11 (2.68)	11 (3.9)	1.47 (0.63-3.45)	.3665
Readmission within 30 d	89 (21.6)	84 (29.7)	1.53 (1.08-2.17)	.0151*
Readmission within 30 d because of a line-related	1 (0.2)	6 (2.1)	8.91 (1.06-74.44)	.0202*
complication				
Mortality	22 (5.3)	49 (17.3)	3.71 (2.19-6.30)	<.0001*

• Many midlines were used in patients with an ICU stay

- Midlines were associated with low CRBSI (1 vs 10)
 - Few DVT (2) noted in this study
- Higher number of mechanical complications among those that got midlines vs. CVCs (11 vs 1)

• No differences in removal rates between midlines and CVC

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

American Journal of Infection Control

Major Article

Safety and utilization of peripherally inserted central catheters versus midline catheters at a large academic medical center

Tianyuan Xu MPH ^a, Lawrence Kingsley DrPH ^a, Susan DiNucci RN, CIC ^b, Gwen Messer MT ^b, Jong-Hyeon Jeong PhD ^{c,d}, Brian Morgan RN ^e, Kathleen Shutt MS ^f, Mohamed H. Yassin MD, PhD, CIC ^{b,f,*}

American Journal of Infection Control 44 (2016) 1458-61

- Retrospective cohort study; single center Pittsburgh
- PICCs and midlines inserted by vascular access team
- Both PICCs and midlines were same manufacturer
- Main outcomes:
 - Severe complications (infection, phlebitis and DVT)
 - Readmission because of line issues
 - Minor complications
 - × Leaking
 - × Edema
 - × Pain
 - × Occlusion

	PICC	Midline catheter	
Complications	(n = 206)	(n = 200)	P value*
Severe complications	10 (4.9)	18 (9.0)	.12
Phlebitis-infection	3 (1.5)	5 (2.5)	
DVT	2(1.0)	2(1.0)	
Readmission because of line issues	4(1.9)	0(0.0)	
Positive culture	5 (2.4)	5 (2.5)	
Infiltration	0(0.0)	9 (4.5)	
Minor complications	3 (1.5)	23 (11.5)	<.001
Pain	0(0.0)	3 (1.5)	
Nonpatent	3 (1.5)	17 (8.5)	
Leaking	0(0.0)	2 (1.0)	
Edema	0(0.0)	1 (0.5)	
Total complications	12 (5.8)	39 (19.5)	<.0001

 Midlines: more "severe" complications, non-statistical
 Three of the 5 phlebitis cases in the midline group = receiving Vancomycin (controversial)

• More readmissions in patients with PICCs than midlines

• Minor complications more common in midlines than PICCs

What do these three studies tell us?

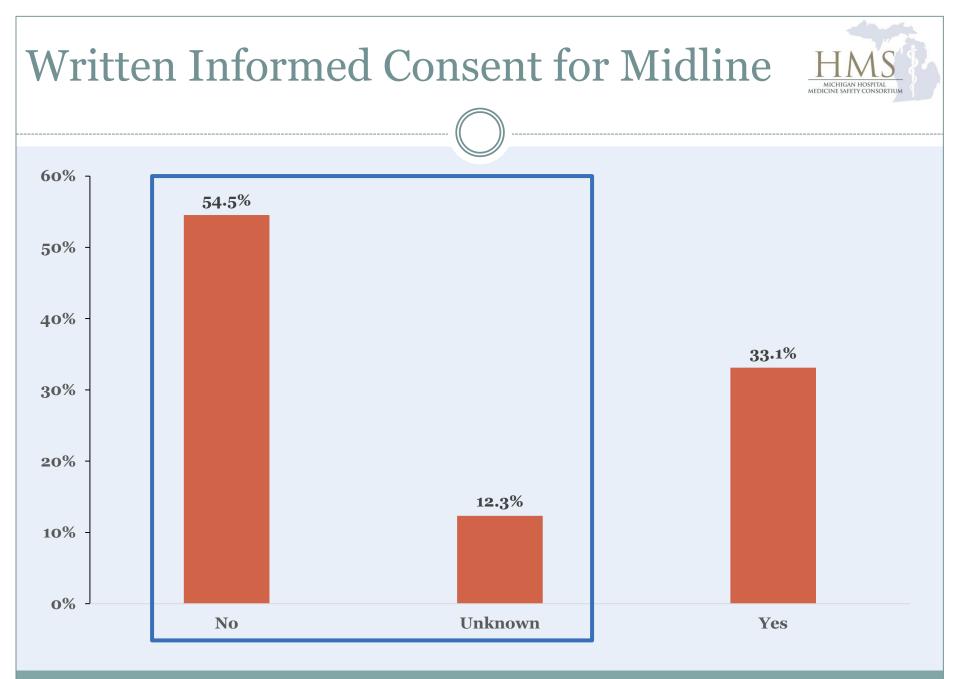
- Overall, minor complications such as dislodgement, leaking, phlebitis <u>></u> more common in midlines
- Infection is less frequent; DVT is same or better
- Important limitations to these data:
 - All single centers retrospective studies
 - All used different devices, inserters, teams
 - A variety of infusates delivered through midlines
 - Different outcome measurement
- A substantial gap in knowledge about use and safety of midlines; HMS is well poised to fill these gaps

Overview

- Introduction and Historical Aspects
- Evidence review what do we know about midlines?
- HMS midline data review
 - Current State
 - What does pilot data tell us?
 - Why are we asking for specific data elements?
- Questions and Answers

Midline Initiative: Current State

Baseline data collection ongoing


- Need to understand data before we make improvements
- Place our findings in context:
 - × What we know about midline use in our hospitals
 - × Differences across device, insertion, infusate and care
 - × Differences in complications across hospitals

Current focus

- Understand current practice in HMS hospitals
- Generate new knowledge into best practice
- Improve documentation related to insertion practices, complications, etc. across HMS hospitals

Midline Dwell Times Across the Collaborative

Should Midline placement require informed consent?

- Does a general consent cover placement of a Midline?
 - Given the risk associated with Midlines, we recommend informed consent

Sample Midline placement consent*

 Can also be incorporated with existing PICC consents

SAMPLE MIDLINE INSERTION CONSENT FORM

hereby give written informed consent

to have a midline catheter inserted into my arm.

I understand that my supervising physician, Dr. ______ has given an order for the placement of this midline for the following indication(s)______

understand that the midline catheter has been medically determined to represent the most effective means for receipt of this treatment/indication.

I fully understand that the insertion of a midline catheter is an invasive procedure which is accompanied by certain risks which include, but are not limited to: unsuccessful placement, local and/or systemic infection, cardiac arrhythmias, wire retention, infiltration, catheter embolism, air embolism, hematoma at the insertion site, catheter tip malpositioning, phlebitis and thrombophlebitis. I understand that all appropriate measures will be employed to reduce or eliminate the chance of these risks occurring.

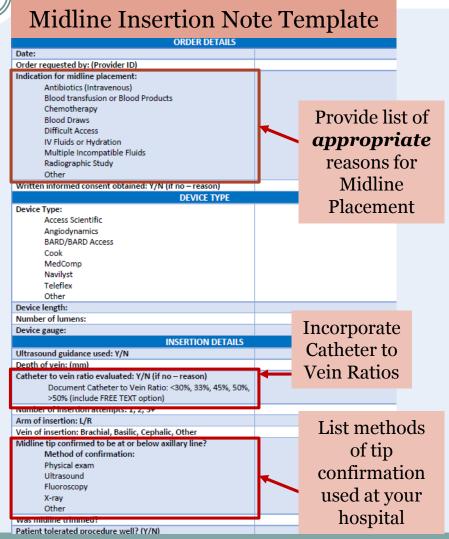
I fully understand that the procedure will only be attempted once evaluation of my upper extremities substantiates that I am an appropriate candidate for midline placement. If I am not a candidate for a midline catheter, other alternative devices will be discussed with me. I fully understand that only an experience and qualified Registered Nurse or Physician will perform the insertion of the midline catheter.

PATIENT: DATE: WITNESS:	TIME
DATE:	TIME
C	

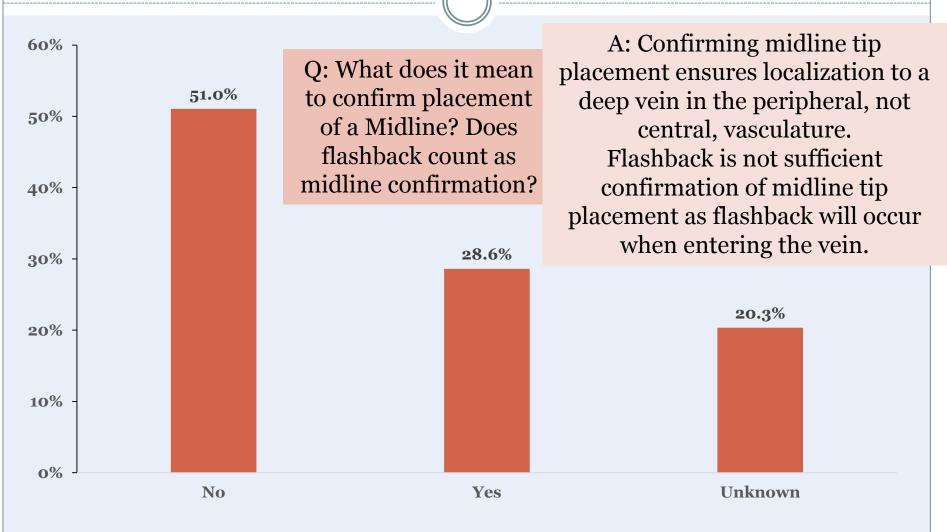
*Resource located on HMS website (http://mi-hms.org/)

Documented Indications for Midline Placement

70%


32 Hospitals 1,573 Midlines

Documentation of Midlines

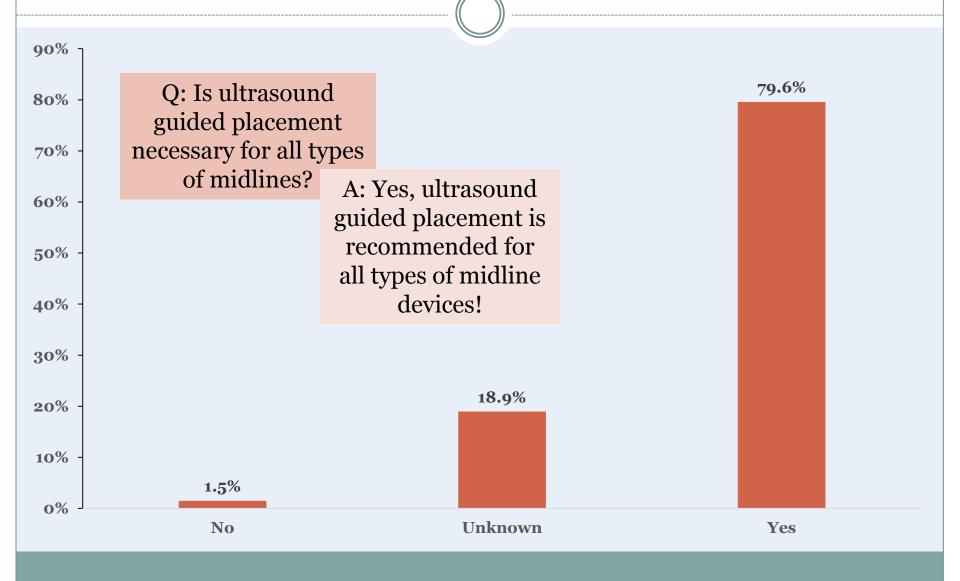


- Example template for documentation of midline insertion*
- Ensures documentation of key variables that can be tracked to assist with local QI efforts
- Ensures better understanding of drivers of complications or limited dwell time

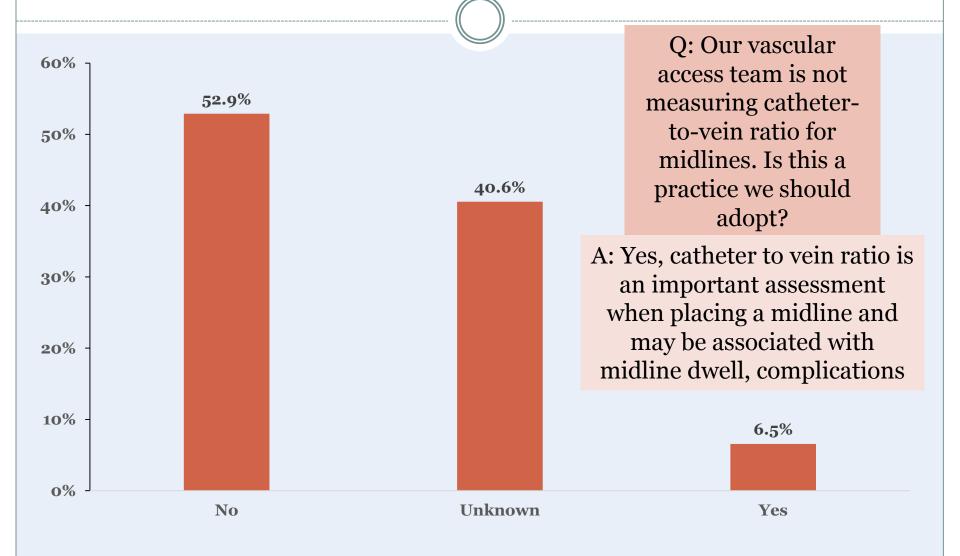
*Resource located on HMS website (http://mi-hms.org/)

Midline Tip Confirmation on Initial Placement

Methods of Midline Tip Confirmation



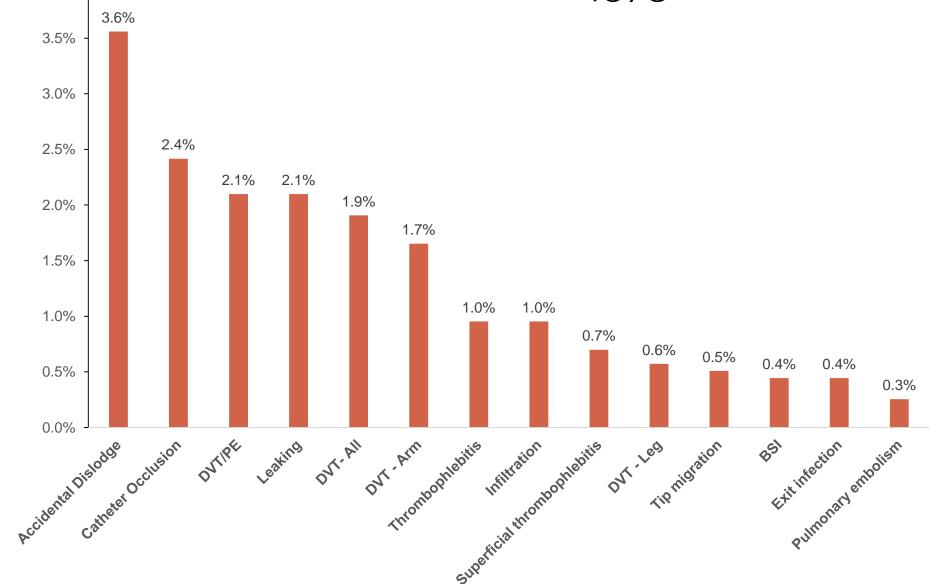
- Physical Assessment (landmark: delto-pectoral groove, anterior axillary line, etc.)
- Ultrasound (during insertion)
- X-Ray
- Fluoroscopy
- Other


Still collecting data on method of tip confirmation (not enough data to share at this time)

Ultrasound Used for Insertion of Midline

Measurement of Catheter to Vein Ratio

Importance of Catheter to Vein Ratio


- Why do we care about catheter to vein ratio for midlines?
 - As with PICCs, catheter:vein ratio is important for ensuring blood flow in peripheral veins of insertion
 - Not respecting the C:V ratio is known to be associated with DVT, phlebitis and premature removal in PICCs
 - It is likely that the same holds true for midlines, but this association has not been well studied

HMS has a unique opportunity to shed light on this issue and improve the safety of Midline use in Michigan

Midline Complications

4.0%

32 Hospitals 1,573 Midlines

Midline Complications

4.0% 3.6% 3.5% Q: Why track tip migration for A: Tip migration is 3.0% midlines as they are important to track peripheral access because it might be 2.4% 2.5% devices? linked to 2.1% 2.1% dislodgement, 1.9% 2.0% occlusion and DVT! 1.7% 1.5% 1.0% 1.0% 1.0% 0.7% 0.6% 0.5% 0.4% 0.4% 0.5% DVT-All DVT - Arm Dophebilis 0.3% 0.0% Superficial thromboomeditis Catheter Occlusion Pulmonaryamboliam Accidental Dislodge Leaking Exit infection DVTIPE 851 DVT-Leg nigration

32 Hospitals 1,573 Midlines

Most Common Midline Challenges Across the HMS Collaborative

- Failure to aspirate labs (21)
- Lack of knowledge regarding appropriate use (16)
- Infiltration or leakage (14)
- Concern about reliability of device (14)
- Documentation (12)
- Concerns related to future vesicant use (12)
- Premature failure resulting in device removal (10)
- ECF's will not accept patients with midlines (9)
- Occlusion (9)
- Dislodgement (7)
- Deep Vein Thrombosis (DVT) (4)
- Other
 - Lack of buy in from IR/Vascular Access, financing the training, PICC preference

To answer these and related questions, we will have to go beyond current studies and look at aspects that have not been considered before!

Overview

- Introduction and Historical Aspects
- Evidence review what do we know about midlines?
- HMS data:
 - o Current State
 - What does pilot data tell us?
 - Why are we asking for specific data elements?
- Questions and Answers
 Questions from HMS sites

Q: When is a midline appropriate?

	Proposed Duration of Infusion				
Device Type	≤5 d	6–14 d	15–30 d	≥31 d	
Peripheral IV catheter	No preference between peripheral IV and US-guided peripheral IV catheters for use ≤5 d				
US-guided peripheral IV catheter	US-guided peripheral IV cathe catheter if proposed				
Nontunneled/acute central venous catheter		eferred in critically ill patients toring is needed for 6–14 d			
Midline catheter	Midline catheter preferred to PICC if proposed duration is ≤14 d				
PICC	PICC preferred to midline catheter if proposed duration of infusion is ≥15 d				
Tunneled catheter		 Preferred over PICCs for use if proposed duration is ≤ 14 days Peripherally compatible infusates Difficult venous access Frequent phlebotomy (every 8 hours) Cap be used for up to 4 weeks (o8 days) 			
Port	 Can be used for up to 4 weeks (28 days) Some hospitals are using midlines for longer durations 				
	Appropriate	Neutral	Disagreement		

Q: When is a Midline contraindicated?

- Continuous vesicant therapy
- Total parenteral nutrition (TPN)
 Solutions greater than 600 mOsm/L
- Infusates requiring central access
- Patients with circulatory impairment, hemiparesis, history of upper extremity DVT
- Patients that may require renal replacement therapy
 Avoid indwelling catheter in deep veins of the arm
 Same logic as PICCs (avoid damaging venous return of the arm)

Midline Q&A: Midline Use

• Is there a list of medications that can/cannot be administered via a midline?

- Depends on the pH, osmolarity, etc. of the medication
 - Avoid infusing medications with pH < 5 or > 9, Osmolarity > 600 through a midline (higher rates of phlebitis)

• There is no official single list!

- Hospitals should refer to midline manufacturer guidelines and work in partnership with their pharmacists to identify inappropriate medications on formulary
- Example hospital policy

Example Hospital Policy

POTENTIAL IRRITANT MEDICATIONS *

(Consider administration via central venous catheter – should not administer via Midline)

*An irritant is an agent capable of producing discomfort or pain along the internal lumen of the vein (s 105 INS SOP 2011)

aminocaproic acid

doxapram

amiodarone

doxvcvcline

nicardipinenitroprusside

POTENTIAL MEDICATIONS WITH VESICANT PROPERTIES *t*

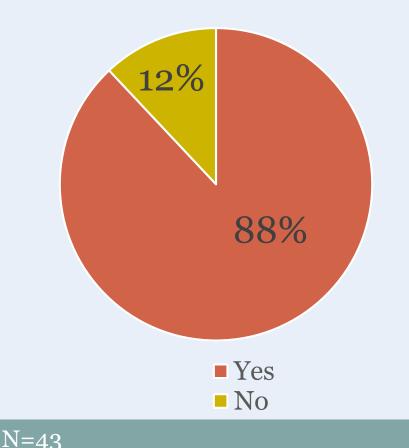
- **(Consider administration via central venous catheter should not administer via Midline)**
- *†Capable of causing blistering, tissue sloughing, or necrosis if it escapes from the vascular pathway into tissues INS SOP S108*
- -
- acyclovir
- calcium chloride
- calcium gluconate
- carboplatin
- carmustine
- chlorothiazide
- cyclophosphamide
- dacarbazine
- dactinomycin
 - daunorubicin
- dextrose over 10%
- dobutamine
- docetaxel
- dopamine
- doxorubicin
- edetate disodium

- epinephrine
- epirubicin
- esmolol
- etoposide
- idarubicin
- lorazepam
- mannitol 10%-20%
- mechlorethamine
- methocarbamol
- methotrexate
- mitomycin
- mitoxantrone
- nafcillin
- norepinephrine
- oxaliplatin
- paclitaxel

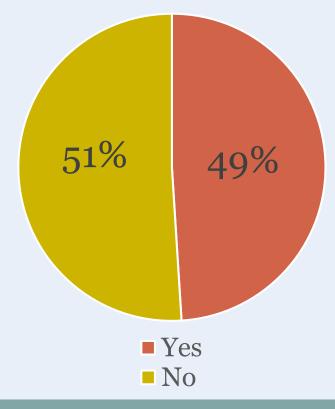
- phenergan
- pentamidine
- pentobarbital
- phenobarbital
- phenylephrine
- phenytoin
- promethazine hydrochloride
- sodium bicarbonate
- streptozotocin
- teniposide
- tobramycin
- TPN
- vancomycin
- vasopressin

HMS MICHIGAN HOSPITAL MEDICINE SAFETY CONSORTIUM

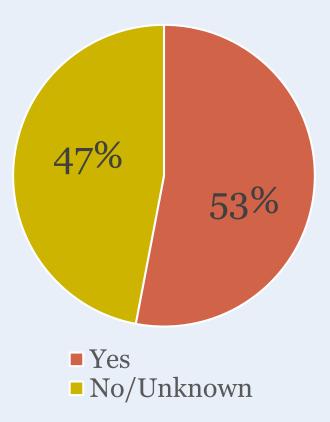
Midline Q&A: Midline Use


• Our facility does not use midlines. Is this something we should look into?

- Evaluate vascular access needs at your facility
 - × Consider current PICC and CVC use
 - × Evaluate appropriateness of PICC and CVC use
- Review current CLABSI and other CVAD complication rates – midlines have proven useful to reduce these!
- Estimate costs and potential savings of a midline program
- Review and trial the different types of midline products to determine which would best meet your needs


Midline Use Across the HMS Collaborative

Does your hospital insert midlines?


Has your hospital begun to place midlines in adult hospitalized medical patients in the past year?



Has the introduction of use of midlines in your hospital led to a decrease in PICC placement?

How to Build a Midline Program

Journal of the Association for Vascular Access

Volume 20, Issue 3, September 2015, Pages 179-188

Case Report

How to Establish an Effective Midline Program: A Case Study of 2 Hospitals

Nancy Moureau BSN, RN, CRNI[®], CPUI, VA-BC™ ^A ⊠, Gordon Sigl MSN, RN, Margaret Hill RN

Show more

https://doi.org/10.1016/j.java.2015.05.001

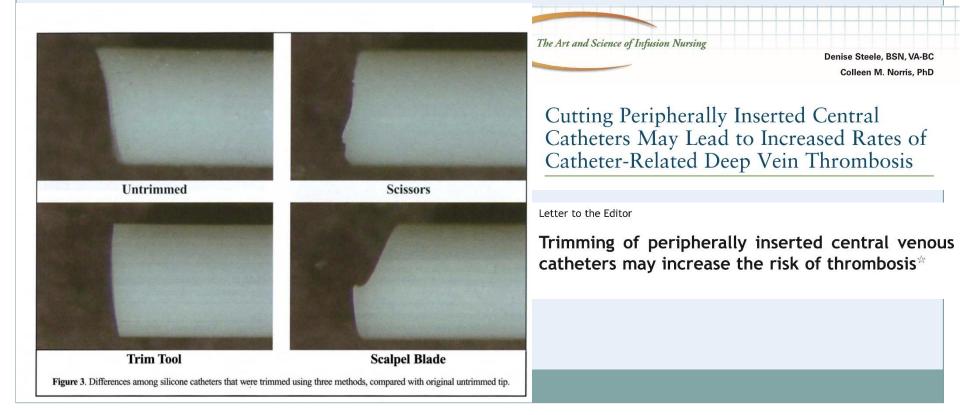
Get rights and content

Sample Midline Order Set

- HMS created a sample midline order set
- Resource located on HMS website

o http://mi-hms.org/

	HERE MATTERNAM						
SAMPLE MIDLINE ORDER SET FORM							
DIAGNOSIS	MIDLINE PLACEMENT ORDERS						
	MIDLINE PLACEMENT □ PICC Team □ Interventional Radiology						
	Number of Lumens □ Single Lumen □ Double Lumen □ Other (specify):						
ALLERGIES	Indication for Midline: - Antibiotics (Intravenous) - Blood Transfusion or Blood Products - Chemotherapy - Blood draws - Difficult Access - Multiple Incompatible Fluids - Radiographic Study - Other (specify):						
	NURSING ORDERS FLUSH ROUTINE: Intermittent use – Flush before and after medication with 10cc of NS Not in use – Flush q 8 hours with 10 ml NS Midline – change dressing and end cap q 7 days and pm						
	MEDICATION ORDERS Heparin lock 10 units/ml Routine Indication: Use heparin lock after flushing with NS, at least twice a day. Note: Nurse please flush with 10 ml of NS prior to administering heparin lock						
	RELEVANT RESULTS REVIEWED GFR > 45 (needs Nephrology clearance if < 45)						


Dat	: Time AN PN	Prescriber's signature and name	Pager #	Countersign (if required)
-----	-----------------	---------------------------------	---------	---------------------------

Midline Q&A: Insertion

• Is it appropriate practice to trim a PICC to midline length? Are there any risks associated with this?

• There is little data to guide this practice

• Is it appropriate practice to trim a PICC to midline length? Are there any risks associated with this?

- Trimming catheters is thought to increase shear stress, turbulence at the catheter tip
- Available evidence is limited, but suggests increased risk of DVT when trimming catheters
- When possible, it is better to use a dedicated midline device than trim a PICC to midline position
- More data is needed

- Is it necessary to place midlines under sterile conditions (i.e. draping, maximal barrier precautions)? What is the evidence behind this? Is draping necessary for all types of midlines?
 - 2016 INS Standards of Practice and 2012 CDC guidelines both state that midline catheter placement should be done under maximal sterile barriers

Thank you!

Questions?